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INTRODUCTION 

At the present time, the rheology of dilute suspensions of rigid dumbbells in a Newto- 
nian solvent has been studied rather completely. A review of work devoted to this problem, 
in which a structural approach was used in the determination of the effective viscosity in 
simple flows, or of the tensor of the stresses in arbitrary flows, is indicated in the bib- 
liography of [i]. The tensor of the stresses in an arbitrarily flowing dilute suspension 
of rigid dumbbells in a Newtonian solvent is found using a structural-phenomenological ap- 
proach [2]. 

The present work �9 dilute suspensions of rigid dumbbells (two rigid spheres of 
radius a, joined by a rigid connection) in a non-Newtonian solvent, whose rheological equa- 
tion of state has the form 

Tij = - - p  sSj~ -f- 2ral2dkmd~hl( '~-W2du,  (o.i) 

where Tij is the tensor of the stresses; Ps is the pressure; ~ij is a Kronecker symbol; dkm 
= (i/2)(Vk, m + Vm,k) is the tensor of the deformation rates; vii is the tensor of the veloc- 
ity gradients; m is the index of the consistency of the liquid; and n is a parameter, char- 
acterizing the degree of non-Newtonian behavior of the liquid. With n < i, this model de- 
scribes pseudoplastic liquids and with n > i, dilatant liquids. The case n = I corresponds 
to Newtonian behavior. In this case, the parameter m is the Newtonian viscosity of the liq- 
uid. 

1. The Structural Theory of Viscosity in Simple Shear Flow and in Flow with Monaxial 
Elongation. The basic assumptions are as follows: interaction between suspended particles 
is neglected; hydrodynamic interaction between the ends (spheres) in dumbbell-shaped parti- 
cles is not taken into consideration; the motion of the suspended particles takes place un- 
der the action only of the hydrodynamic forces of the flow (there is no effect of rotational 
Brownian movement or of electrical or magnetic fields); the moment of inertia of the suspend- 
ed particles is neglected; the solvent interacts with the suspended particles as with hydro- 
dynamic bodies; and the flow of the solvent around the spheres of a dumbbell is discussed 
in the Stokesapproximation. 

The flow of a homogeneous power-law liquid (0.i) around a spherical particle in the 
Stokes approximation was first considered in [3], the results of which were refined in [4-7]. 
The resistance coefficient of a sphere of radius a, moving with the velocity U, is determined 
by the relationship [7]. 

= 2 n J ( n ) m U , ~ - l a ~ - n  ; 

in accordance with [3], 

J(n)  2(t2/n~)(~+l)flF(n),  

where the  f u n c t i o n  F(n) i s  t a b u l a t e d  [5 ] ;  s p e c i f i c a l l y ,  J (1 )  = 3 (Newtonian l i q u i d ) ;  
sistance coefficient ~ = 6~ma. 

(I.i) 

(1.2) 

the re- 
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Fig. 1 

The angular position of a dumbbell in space will be characterized by the angles ~ , e 
(see Fig. I), with respect to a system of rectangular Cartesian coordinates (x, y~ z), with 
an origin coinciding with the center of the axis of the particle. It is assumed that the 
velocity of the particle coincides with the velocity of the solvent. 

The angular velocity of the dumbbell m = {m~, ~0} in simple shear flow 

v ~ = 0 ,  vy =h'x ,  ~ = 0 ,  K : c o n s t  ( 1 . 3 )  

and in a flow with monaxial elongation 

r,~ : - - (q /2 )x ,  uy : - - (q /2 )y ,  v~ : qz, q : cons t  (1.4) 

of the medium under consideration is obtained by equating to zero the moment of the hydrody- 
namic forces M = {Me, M~} acting on the particle: 

-5" s in  fl , 

- ~  Sin 0 , 

: 

where L is the distance between the centers of the spheres of the dumbbell; the first terms 
in parentheses are the components of the velocity of the liquid in the vicinity of a sphere 
of the dumbbell, in directions of the change in the angles ~ and 0 perpendicular to the axis 
of the particle; the second terms are the linear velocities of the end of the particle (a 
sphere) in the direction of the change in the angles ~ and 0; the dots above ~ and 8 denote 
the total derivatives with respect to the time; 

~, / L~n--li . ~)I n-i ~: 2a](n)ma2--n(y) l sm O ( K  cos2 r~ - -  , 

~ '  g 

o ~ f •  oln-: ,  ~ : 2.~: (,,),,a ~-" ]~ ~in 
<~1 , , 

: "-' 

in accordance with (i.i). The indices i and If, here and in what follows, denote simple 
shear flow and flow with nonaxial elongation. 

Under these circumstances, the components of the angular velocity of the particles are 
determined by the equations 

~ - - -  $ = K ~o~ ~- ~, 

= -~- sin 2~o s in  20; 
(1.5) 
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~---~T =0, (1.6) 

~ =---6= q s i n 2 0 ,  

which coincide with the corresponding equations for a Newtonian solvent. 

From Eqs. (i. 5) and (1.6)it follows that the linear velocity of the liquid in the vi- 
cinity of a sphere is perpendicular to the axis of the particle. Therefore, the relative velocity 
of the solvent uo, flowing around the end of a particle, is directed along.the axis of the particle. 
In flows (1.3), (1.4), it is determined by the relationships 

L u~ = -~- K sin2 0 sin~ cos~; (1.7) 

u~ = (2 0- si.  01 (1.8) 

Then the rate of dissipation of energy with the flow of a solvent around a dumbell (two 
spheres) has the form 

E 0 = 2 <~0u~>, (1 .9)  

where a v e r a g i n g  i s  c a r r i e d  ou t  over  a l l  t he  a n g u l a r  p o s i t i o n s  o f  t h e  axes  o f  the  p a r t i c l e s ,  
u s i n g  t h e  d i s t r i b u t i o n  f u n c t i o n  F (~ ,  0 ) ,  d e t e r m i n e d ,  as  f o r  a s u s p e n s i o n  in  a Newtonian s o l -  
v e n t ,  f rom t h e  e q u a t i o n  

div(mF) = O, 

and the coefficient of the resistance ~o, in accordance with (I.I), (1.7), and (1.8), is de- 
termined by the relationships 

I+) ~# = 2 z J ( n ) m a  2-n n--i ]K sin~ 0 sin (p cos q)l ; (1 .10)  

The rate of the dissipation of energy in unit volume of the suspension under these circum- 
stances is defined as 

E = E s + N E o ,  (1 .12)  

where E s is the rate of dissipation of energy in unit volume of the solvent in the absence of 
suspended particles; N is the number of suspended particles in unit volume of the suspension. 

For the flows (1.3), (1.4), from (1.3), taking account of (l.7)-(l.ll),thereisobtained* 

K " 2 0sin2tp)')>; E •  0 sin 2(p[n+t ( K  sin ~ (1.13) 

E" =ml3q~l 2 +4~NJ(n)maZ-n (cos 20 + cos~ 0) -+1 cos20+cos~0 

R e l a t i o n s h i p s  ( 1 . 1 3 ) ,  (1 .14)  p e r m i t  d e t e r m i n i n g  the  e f f e c t i v e  v i s c o s i t y  Pa of  the  medi -  
um under  c o n s i d e r a t i o n  in  f lows  ( 1 . 3 ) ,  ( 1 . 4 ) . u s i n g  the  f o r mu l a s  

2. S t r u e t u r a l - P h e n o m e n o l o g i c a l  Theory .  I t  f o l l o w s  from t h e  p r e c e d i n g  s e c t i o n  t h a t  the  
s t r e s s e d  s t a t e  i n  a d i l u t e  s u s p e n s i o n  o f  r i g i d  dumbbel l s  i n  a power- law l i q u i d  must be a 
f u n c t i o n  n o t  o n l y  o f  t he  s h e a r  r a t e ,  b u t  a l s o  o f  t he  o r i e n t a t i o n  o f  t he  suspended  p a r t i c l e s .  
Therefore, the tensor of the stresses, characterizing the stressed state in an arbitrarily 
flowing dilute suspension of rigid dumbbells in an incompressible power-law liquid (0.1), in 
the absence of external force fields, will be sought, analogously to [8], in the form 

ti I = f ij(dkm, hi), (2 .1 )  

*As i n  R u s s i a n  o r i g i n a l  -- P u b l i s h e r .  
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where n~ is a unit vector, characterizing the orientation of a dumbbell-shaped particle in 
the system of coordinates (x, y, z): 

n x = cos q) s in O, n u --~sin qo sin O, n z - - c o s  O. 

To obtain the rheological equation of state (2.1), we assume that the matrix {tij} is 
an isotropic function of the matrices {dij} and {ninj} , and we use the result of Rivlin and 
Ericksen [9], determining the overall form of an isotropic function of a matrix of the 3rd 
rank from two other matrices of the 3rd rank. 

Under these circumstances, we obtain 

t i :  = aoSi~ + ~n~n:  -~ ~t3di~dai ~., aa(d~n:n~ + d~n~ni)  + a~di~ + a~(n~n~d~mdm~ + nmnid~d~m),  ( 2 . 2 )  

where ~i(i = 0,i, ..., 5) are functions of theinvariants 

I2 = damdm~, I3 = dmhdhtdtm, 
J l  = dhmnun~, J~ = damdmtnant. ( 2 . 3 )  

Since the Eqs. (1.5), (1.6), determining the angular velocities ~ ~ and ~ I, coincide with 
the corresponding equations for suspensions with a Newtonian solvent, the determining equa- 
tion for the vector of the orientation will be sought in the form (analogously to [8]) 

ni = gi(nz, dkm), (2.4) 

where fii = ni -- ~ijnj, mij = (1/2) (vi, j -- vj,i) is the tensor of the vorticity of the veloc- 
ity. Using the Hamilton -- Cayley theorem, we obtain 

gi = ~lni ~- ~2d~jnj ~- ~3dihdklnJ, 

8a are functions of the invariants (2.3). Taking into consideration that nin i where 81, 82, 
= ni~ i = nig i = 0, (2.4) finally assumes the form 

ni - -  o~ijnj = ~2(dijni - -  dkmnl~nmni) q- ~3(di~dkjnj - -  d~mdm,n~n,n~). ( 2 . 5 )  

We determine the parameters 82 and 83 comparing m• , o~} and (011 {o$, o~}, deter- 
mined from (2.5) for the flows (1.3), (1.4) with their values from Eqs. (1.5), (1.6). 

Under these circumstances, we obtain 82 - I, 8a - 0. 

Thus, the equation determining the angular velocity of the axis of the dumbbell in an 
arbitrary flow has the form 

ni = (o)ii ~- di~)nj - -  d~mnhnrani. ( 2 . 6 )  

Equation (2.6) coincides with the corresponding equation for a dilute suspension of rig- 
id dumbbells in a Newtonian solvent [2]. 

It follows from Eq. (2.6) that, as in a Newtonian solvent [2], the axes of the particles 
in an arbitrary flow of a suspension are distributed nonuniformly over the angular positions. 
The distribution function of the axes of the particles over the angular positions is deter- 
mined from the equation 

0 (Fn~) = 0. (2.7) 
On i 

As the rheological equation of state of a dilute suspension of rigid dumbbells in a pow- 
er-law liquid (0.I) we take relationship (2.2), averaged using the distribution function 
F(ni) , determined by Eqs. (2.6), (2.7): 

T~j = < t~j > = - - p S i j  + < al  > dij -[- ( o:2ninj > ~-\' ~ c% > d~hdhj -+- 

+ < o:4n.~n~ > dih -I- < (x4nhn~ > dki -~- < (z~ninh > d~md,~j -v- < asnmnj  > dihdkm. 
(2.8) 
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TABLE i 

(Z(n) n 2 l - n  J(n) o~(n) rt 2 t - n  J(n) 

t55,5555 
80,6823 
50,2i22 
33,8003 
23,4209 
t6,2591 
t1,12ti 
7,454! 

0,2 
0,3 
0,4 
0,5 
0,6 
0,7 
0,8 
0,9 

i5,7786 
12,4773 
i0,5692 
9,1i49 
7,7939 
6,5t00 
5,2626 
4,1i28 

t,5= 
t,5335 
0,2683.t0 - i  
0,1362.t0 -2 
0,7066.t0 -5 
0,8388.t0 -7 
0,8293.10 -~0 

i,0 
1,25 
2,0 
2,5 
3,33 

5,0 

3 
t,3508 
0,5365.t0 - 1  
0,4408.t0 -2 
0,4804.10 -~ 
t,0064.t0 -6 
0,2253.10 -8  

To determine the rheological parameters ai(i = i ..... 5), we compare the rate of dissi- 
pation of energy in unit volume of the suspension in an arbitrary flow, obtained using (2.8): 

E = Tud u = < ~1 > dijdi~ ~ < ~n~n~> d~ ~ <a~> • 

• dt~d~ 1 d~-~ < ~4n~nj } d~d~ --}- < ~4nhni > d~jdi1 ..{- 

+ < ~n~n~ > d~md~d~) ? < a~n~n i > d~d~,~d~i ( 2 . 9 )  

w i t h  t h e  r a t e  o f  t h e  d i s s i p a t i o n  o f  e n e r g y  o b t a i n e d  u s i n g  t h e  s t r u c t u r a l  me thod .  

From Eq. ( 2 . 6 ) ,  f o r  an a r b i t r a r y  f l o w ,  as  f rom ( 1 . 5 ) ,  ( 1 . 6 )  f o r  t h e  f l o w s  ( 1 . 3 ) ,  ( 1 . 4 ) ,  
i t f o l l o w s  t h a t  t h e  r e l a t i v e  v e l o c i t y  o f  t h e  s o l v e n t ,  f l o w i n g  a r o u n d  t h e  end o f  a d u m b b e l l -  
s h a p e d  p a r t i c l e ,  i s  d i r e c t e d  a l o n g  t h e  p a r t i c l e  and i s  e q u a l  t o  

u o = (L/2)dkmnhnm. (2.10) 

The rate of dissipation of energy with the flow of a solvent around a dumbbell in this 
case is determined using formula (1.9), where the averaging is carried out using a distribu- 
tion function, obtained from Eqs. (2.6), (2.7), and the resistance coefficient ~o, in accor- 
anee With (i.i), (2.10), is determined by the relationship 

.~o = 2nJ(n) ma2-n (L/2) n-1 Idkmnknml n-*. 

Thus, the rate of dissipation of energy in unit volume of a suspension in an arbitrary 
flow, in accordance with (1.12), has the form 

E = 2ml2dkmdmk](n-1)/2dijdji + 4~NJ(n)ma2-n(L/2i~+ ~ <.ldkmn~nmln--l(dkmn~nr,,)'> . ( 2 . 1 1 )  

It can be verified that, for the flows (1.3), 
(1.14). 

Comparing (2.9) with (2.11), we obtain 

(1.4), expression (2.11) coincides with (i.13), 

al  = 2ml2Ia[Cn-1)/~), 
cz~ = N ~ J  (n)21-nma~-nL n+~ ]Jlln-~ J'l, 

o~ s ~ O~ 4 ~- .  o~ 5 ~ 0 .  

T h e r e f o r e ,  t h e  r h e o l o g i c a l  e q u a t i o n  o f  s t a t e  o f  a d i l u t e  s u s p e n s i o n  o f  r i g i d  d u m b b e l l s  i n  an 
i n c o m p r e s s i b l e  p o w e r - l a w  l i q u i d  h a s  t h e  fo rm 

T~j = --pSij ~ 2m]2dhmdmk[(n-1)/~d~j -I- N~J(n)21-'tma2-nLn+l< Idkmnhnml'~-Id~mnknmninj> . (2 .12 )  

With  n = 1 (Ndwton ian  s o l v e n t ) ,  we a r r i v e  a t  t h e  r h e o l o g i c a l  e q u a t i o n ,  o b t a i n e d  i n  [ 2 ] :  

Tij = --p6ii .~ 2m'd u -}- N3nrnaL2dhm < nhnmninj }. 

The d e p e n d e n c e  o f  2 * - n J ( n )  on n ,  t a k i n g  a c c o u n t  o f  ( 1 .2 )  and t h e  d a t a  o f  [ 5 ] ,  i s  g i v e n  i n  Ta -  
b l e  1. 
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A rigid dumbbell can serve as a model of a rigid rod-shaped particle of cylindrical 
form, with a length L and a diameter d. Here the radius a of the spheres of the dumbbell is 
determined by the relationship 

a = W ( d ) / 3 ~ m L  2, (2.13) 

where W is the coefficient of rotational friction of a rod-shaped particle of length L in a 
Newtonian liquid with a viscosity ~ = m, determined experimentally; 3~maL 2 is the coefficient 
of rotational friction of a dumbbell in a Newtonian liquid with a viscosity ~ = m. 

Therefore, Eq. (2.12), in which the value of a is determined by (2.13), can serve as the 
rheological equation of state of dilute suspensions of rigid rod-shaped particles in a power- 
law liquid. In this case, the number of particles in unit volume of the suspension N can be 
expressed in terms of the volumetric concentration r of the suspended particles: 

N = 4(1)~Lad2. 

As an examPle , let us consider plane Couette flow 

v.~ = O, % = E x ;  E = c0nst .  ( 2 . 1 4 )  

From (2.6) we obtain the result that the suspended particles rotate with the angular velocity 

q~ = / fcos2% ( 2 . ! 5 )  

From (2.8) it follows that 

~x~ = T ~ y / K  = m tKI '~-~ -4- 4 a N J  (n)  m a  2 - ~  (L /2 )  =+t < [K  s in  q) cos  (pl ~ -1  s in  ~- qo cos 2 qg). 

The distribution function for the averaging in (2.16) is found from the equation 

(2.16) 

(q~F) = O, ( 2 . 1 7 )  
O~ 

where ~ is determined from (2.15). The solution of (2.17), satisfying the condition of nor- 
malizing 

2~ 

0 

has the form 

F(qo) = (1 /2 r0 i / co s :  % ( 2 . 1 8 )  

From (2.16), taking account of (2.18), it follows that, in the flow (2.14), the medium 
under consideration behaves like a power-law fluid with a degree of non-Newtonian behavior 
of the solvent and with the effective consistency 

ma = m [ I) ; ] L n+l  
i q - 2 N J ( n ) a  2 - n  -:2- I s inq~176176  ~ �9 

0 

Using the fact that [I0] 

and taking account of 

,) 

o 2 r  (n § t) , 

( 1 . 2 ) ,  we  o b t a i n  

ma = m [ l  @ 4Na2-nLn+l(3/n2)(n+l) l~F(n)F2(n/2)[F(n)] . ,  
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The dependence of 

[ ( m ~ - - m ) / N m l t / a ~ - g L n +  ~ = ~(n) 

on n is given in Table i. With n = i (Newtonian solvent) 

l (ma -- m ) / N m l l i a L  ~ = (3/2)~t, 

which coincides with the results of [2]. 
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HEAT TRANSFER WITH THE FLOW OF STRUCTURALLY VISCOUS MEDIA IN TUBES AND CHANNELS 

T. Negmatov and P. V. Tsoi UDC 536.25 

In various branches of modern technology, wide use is made of so-called structurally 
viscous media, which, in their physical properties, differ considerably from ordinary Newto- 
nian liquids. Structurally viscous media include high-polymer, colloidal, bulk, coarsely 
dispersed, and other systems, for which the Newton hypothesis of a linear dependence between 
the rate of deformation and th~ stress no longer holds. A nonlinear dependence between the 
stress and the gradient of the rate of flow is the most characteristic special feature of 
non-Newtonian liquids [I]; this dependence is frequently expressed by the Ostwald formula 

T = k(dw/dr) ~.  ( 1 )  

For a laminar, hydrodynamically stabilized flow of anomalous liquids with an exponen- 
tial rheological law (i), the field of the velocities in a round tube and a plane-parallel 
channel is expressed by the formula 

| 
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